An Even 2-Factor in the Line Graph of a Cubic Graph

نویسندگان

چکیده

An even 2-factor is one such that each cycle of length. A 4- regular graph G 4-edge-colorable if and only has two edge-disjoint 2- factors whose union contains all edges in G. It known the line a cubic without 3-edge-coloring not 4-edge-colorable. Hence, we are interested whether those graphs have an 2-factor. Bonisoli Bonvicini proved connected with number 2-factor, perfect matching [Even cycles 2-factors simple graph, Electron. J. Combin. 24 (2017), P4.15]. In this paper, extend theorem to satisfying certain conditions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Even Cycles and Even 2-Factors in the Line Graph of a Simple Graph

Let G be a connected graph with an even number of edges. We show that if the subgraph of G induced by the vertices of odd degree has a perfect matching, then the line graph of G has a 2-factor whose connected components are cycles of even length (an even 2-factor). For a cubic graph G, we also give a necessary and sufficient condition so that the corresponding line graph L(G) has an even cycle ...

متن کامل

Disjoint Triangles of a Cubic Line Graph

In this paper, we prove that a cubic line graph G on n vertices rather than the complete graph K4 has b3c vertex-disjoint triangles and the vertex independence number b3c. Moreover, the equitable chromatic number, acyclic chromatic number and bipartite density of G are 3, 3, 79 respectively.

متن کامل

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

متن کامل

Line graphs associated to the maximal graph

Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theory and applications of graphs

سال: 2022

ISSN: ['2470-9859']

DOI: https://doi.org/10.20429/tag.2022.090107